Elucidating the role of transport processes in leaf glucosinolate distribution.

نویسندگان

  • Svend Roesen Madsen
  • Carl Erik Olsen
  • Hussam Hassan Nour-Eldin
  • Barbara Ann Halkier
چکیده

In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots

We recently described the glucosinolate transporters GTR1 and GTR2 as actively contributing to the establishment of tissue-specific distribution of the defense compounds glucosinolates in vegetative Arabidopsis plants. Upon bolting and thereby development of the inflorescence and initiation of seed setting, the spatial distribution of glucosinolates does undergo major changes. Here we investiga...

متن کامل

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis.

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP-glucose:thiohydroximate S-glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low Km ...

متن کامل

Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis.

Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2)...

متن کامل

Numerical Modeling of an Innovative Bipolar Plate Design Based on the Leaf Venation Patterns for PEM Fuel Cells

Flow channel design on bipolar plates has a direct effect on Proton Exchange Membrane (PEM) fuel cell performance. It has been found out that the flow field design has a deterministic role on the mass transport and water management, and therefore on the achieved power in PEM Fuel cells. This study concentrates on improvements in the fuel cell performance through optimization of channel dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 3  شماره 

صفحات  -

تاریخ انتشار 2014